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Abstract—In recent years, the finite-difference time-domain lem domain is usually made up of cubes, and the material
(FDTD) method has found numerous applications in the field parameters are assigned to these cubes. This, of course, may

of computational electromagnetics. One of the strengths of the also be a weakness, limiting the accuracy to which any

method is the fact that no elaborate grid generation specifying . . 7 -
the content of the problem is necessary—the medium is specifiedsurface can be defined according to the “stair casing” of

by assigning parameters to the regularly spaced cubes. However, the FDTD formulation. Furthermore, the averaging of the
this can be a weakness, especially when the interfaces betweenmaterial properties at interfaces between neighboring media
neighboring media are curved or “sloped” and do not exactly fit often leads to significant errors. The reasons for these problems
the cubic lattice. Since the£- and H-fields are only calculated at - 5.6 jnherent to the FDTD method: firstly, the field components
the regular intervals, sharp field discontinuities at the interfaces . . . .
are often missed. Furthermore, the averaging of the material are only calculated "?‘t uniform spatially shifted intervals, and
properties often leads to significant errors. In this paper, a secondly, and more importantly, the FDTD method calculates
post-processing method is presented, which approximates the E-field (andH -field) componentindirectly from electric (and
correct field behavior at the interfaces by interpolating between magnetic) fluxes, which cross perpendicular quadratic surfaces
the FDTD calculated values, splitting them into the components  ¢,nsirycted by thél-lines (andE-lines) associated with curl-
normal and tangential to the interfaces, and then enforcing the Lo . .
interface conditions for each of these components separately. related line |r_1tegrals ovefl (and £) [8]. The rela’.tlonshlp_ .
between the field components and the flux values is not trivial
da, curve and “sloped” erfaces, FOTD metod, flxrelted g ' EEBSER €0 CRORC B EE (T I AR
fields, interface conditions, layered spheres, linear interpolations, = . .
Mie series solutions. have to be taken into account—especially for such interfaces.
There have been hybrid FDTD formulations that used more
complex structures [8]-[12] than simple cubes. However,
deviations from the regular grid formulation always present
NE OF THE most widely used methods in compumore complications and time spent in generating the problem
tational electromagnetics is the finite-difference timedomain.
domain (FDTD) method [1]-[4]. This method is a straightfor- In this paper, we present a formulation for postprocessing
ward implementation of the time-domain Maxwell's equationsf the FDTD simulation that can significantly improve the
into a finite-differencing scheme. The strength of the methodrissolution of the FDTD at interfaces. This formulation uses
its simplicity, lending it to easy implementation into a broathe fields calculated by a standard FDTD program, then
range of applications. interpolates at points between the FDTD calculated values,
An important characteristics of the FDTD method is thand then “corrects” the interpolated results in the frequency
fact that it does not require the generation of a complicateldmain based on the geometry of interfaces and parameters
grid to define the problem domain as is often used, faf the surrounding medium. Since it is only done once, upon
instance, in the finite-element method [5] or the volumeompletion of an FDTD simulation, it does not substantially
surface integral-equation method [6], [7]. The FDTD probadd to the simulation time. We present a formulation for
electrically inhomogeneous and magnetically homogeneous
e aee oy Beine Spaassonsong Hedi Detoens Kepangiecia. (blological media), although a simiar formulaton
\gé\l/sqs;ggogj Dgutsche Forgchungsgemeins?:haft (Sdnderforschungsberééﬂ be Qerlved for magne_tlca”)'/ inhomogeneous media. An
273). explanation of the formulation will be presented, followed by
V'J‘hNad}gl?nr;zuiri W:\t/lheé?cealcgﬂciﬁogr ;aﬂitmol'\gfd&i]?\zrghéﬁ;aggx; examples of FDTD calculations, which are verified by analytic
1ggSgWBerlin, G’ermany (e-mail: nadobny@zib.de), and taylso with Kérﬁ—esuns basedlon Bessel-function expanson_s. It will also be
rad—Zuse—Zentrum fuer Informationstechnik Berlin (ZIB), D-14195 Berlirshown that this “corrector” can correct significant errors that
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by (¢, 4, k), defined in the center of theH'-loop-surface”A
as follows:
VI(i, J, k)
=~ UG, 4, k) + AT - Al
(H g = 5 k) - HIOP (04 R)

+Hy (i L GR) - HY VD=4, k).

|
|
+ (2a)
|
I
: - ik From this, an averaged, (“flux-related”) FDTD value of
, i izg‘y’gjzz(éllj k)) the electric field at the time step is obtained via a simple
I - WY z\hh . . .
E £ %\%“i' £ (xy.2)/E, (1K) approximation of (1b) as follows:
L E,(6,2)E, (11.K) S V2, j, k)
ij, + WZ(XvY:Z)/\Vz(i'j*k) EZ (1’7 Js k) ~ E ('L 7 ]C) A (2b)
1 - 1 y z 1S
FeTTTTT TS 4 where the averaged dielectric constant throughoutdHeop-

- Al — = surface A in (2b) is given by

Fig. 1. Fields within the contour of aF-loop-surface”A in the Yee cell ) 1

in close proximity to an interface given by the permittivity valugsandes. éz(i, 7 k) =~ // 5(% Y, Z) -dxz dy. 3)
The relationship between the “exact” values.[x, v, z), e(x, y, 2), - IS A A

eitherz; or 2], the averaged, “flux related,” FDTD valug¥. (z, y. z),

Z.(r. v, =), and the fluxW. (z, y, =) through surfaceA due to the In generalge(z, v, 2) in (_1b) can re_present a real d|electr|g
translation ofA (and the entire FDTD lattice) in thg-direction in relation constant and a conductivity. Thus, in the frequency domain,

to a fixed position of the interface between andes. The approximation of it will be complex. Thus, for the disretization of (1b), an
this translation effect for averaged values (linear interpolation) is described_in, ... . - .
the Appendix. The “recovery” scheme of the “exact” solution from averageé"?jdmonal averaging over conductivity values is necessary (not

values is given by (12). shown here).
As a result of an FDTD run, we obtain (in the frequency
domain) a set of values in the lattice points, eitfiels, j, k)
im Of E.(i, , k). [Only one set must be stored, another one is

in the mediume; at a location next to the interface (po
! (b qbectly given via (2b), which is also valid in the frequency
o)

in Fig. 1), E is an averaged value that has been obtained
the standard FDTD method. (An analogous procedure can
applied with a different value aE to mediume- at the other
side of the interface, which, for simplicity, is not shown.) Th
statement of the problem i& is what we have, buE is what
we want. To put the problem in the perspective of the FDT
formulation, Fig. 1 illustrates the calculation (Ampere’s Iawi
of the z-component of the electric field via electric fluk,
through the surfacel bounded by a contout’ as follows:

ain for complexé. (4, 4, k).] Theoretically, in order to
tain E. or U betweerthe lattice points, we could translate
the FDTD lattice with respect to a fixed geometry and run
?he FDTD calculation again. Repeating this numerous times,
Bnd defining for each FDTD rudP(z, y, z) as the new
osition of the “old” lattice point(¢, j, k), we would obtain
set of valuesl.(z, v, 2), £.(z, v, z), and E.(z, y, 2), as
indicated in Fig. 1. [In the practical implementation, the effect
of this translation will be approximated by an interpolation (see
9 Appendix).] In general, due to the averaging of (2a) and (3),
E\PZ = j{ Hedl (1a) the averaged distributio, would becontinuouswith respect
& to the translation in the- andy-directions, i.e., continuous on
the “old” H-loop-surfaceA, independent of the geometry of
where the relationship betweeh. and the exact field distri- the interface. In contrast, the “exact” distributiéh is usually
bution E_(z, y, z) on A is given by discontinuouson A, it “jumps” during transitions between the
mediae; ande». Thus, in order to take this discontinuity into
. . account, the averaged distributid®, must, in most cases, be
V= //fE cdA = //Ae(x’ v, 2) Bz, y, 2)dw dy corrected with the exception of two special cases: the trivial
(1b) case of a homogeneous céll = e; = e, and the case of
where A = Al*Al, Al'is the length of the cube’s edge. Thehe interface normal being perpendicular to thelirection.
surfaceA crosses an interface betwegnandes, such that one |n the latter caseF.(x, y, z) is also continuous omd and,
part of A belongs to mediure,, and the other part to mediumtherefore, can be represented By(z, v, z). Notice that for
€2, respectively. Thus, for this cas€r, v, ) in (1b) is either the limit case of a constant value & on A, the remaining
€1 Or 3. The standard FDTD methodology is to discretize (1agtegration in (1b) becomes identical with the integration in
using the spatial differencing of the surroundify and H,  (3). Thus, (2b) implicitly yields the exact valug, = E=.
values in order to calculate the new value of fiix through Referring again to Figs. 1 and 2, both the “exact” and the
A at the time stem at the point in the FDTD lattice specifiedaveragedE-field vectors can be described by the sum of the
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air 45°%axes (yz plane)
Ve

—————— N Etaﬂzétan Hx | - —

Eztan= Eztan X‘/ X E,=30
6 = 0.3 mho/m
= Al
Ezlan=Eztan 2 Er:5

o B Eten= Etan G =0.05 mho/m

Al=1cm

Fig. 3. Test configuration used to evaluate the FDTD results via
E Bessel-function expansion. The ‘A&xes” in theY Z-plane. Notice that due

to the specification of the Yee cells (1-cm size) with respect to the geometry

of the sphere, the lattice points fdr.- and for E,-FDTD computation

are located on the 45axis, indicated as a dashed line, which is shifted

a half-cell length (0.5 cm) in the-direction with respect to the “exact

45° axis” (dotted line).

or, more generally, for all points in the FDTD domain,

Eulw . 2) = Bula y, 2) + (M - 1)

Fig. 2. Splitting of the “exact” E) and averagedi) FDTD fields into the e(x, ¥, 2)
tangential (above) and normal (below) directions with respect to the interface ~
between:; andey, and subsequent projection into thedirection. B, norm(% Y, Z)- (12)

Equation (12) is the heart of the method. The second term
components tangential and normal to the nearby interface [ie the right is the “correction,” i.e., the difference between the
coordinate indexz, y, z is left out for simplicity for all averaged FDTD value and the “exact” valug, ;. in (12)
expressions in (4)—(11)] is calculated from the scalar product of the averaged FDTD

E =Eun + Enorm 4) ve~ctorE and the unit normal vector at the interfafie

E =Etan + Buorm- (5)  Eenom(z, ¥, 2) =0(z, y, 2) - {(z, y, 2) ¢ E(z, y, 225-3)
At this point, according to the above discussion of thg_ is the z-component of. i1 is derived from the gradient of
standard FDTD discretization, we make two key assumptionsisee Appendix), i.e.ii [and, consequently, alsB’. yory, iN
1) The tangential component of the averaged FDTD value (i83)] are nonzero, not only directly at the interface, but also
equal to the tangential component of the “exact” valueEbf for other points on théZ-loop-surfaced, where the correction
(Btan = Eian, shown in Fig. 2). Consequently, also for theif12) is necessary. Analogous expressions to (12) and (13) can
z-components, be derived for:- andy-directions usm@w/w €x/y» Bz /y norm

Evon ™ B o, (6) andn,,,, respectively.

2) The normal component of the flux density is a constapt Remarks
throughout the interface between and s, for “exact” and
averaged distributions (see Fig. 2). Therefore, in mediym
for the z-components

1) If the cell is homogeneous (the case= ¢ on A),
the second term in (12) goes to zero. Similarly, if the
interface normalia is perpendicular to the-direction,
>~z E. oorm- (7) then E. ,o.., = 0 and, again, the second term in (12)
goes to zero. Either of these two situations result in

The relationships in (4) and (5) can be interpreted as the  the uncorrected FDTD value being equal to the “exact”
three separate equations corresponding to the three directions, gye.

€1 Ez norm

one set of which is 2) It can be shown that applying (12) to a pair of points
E.=E..on+ E- norm (8) which are situated on different sides of the interface
B =Bt B ©) in the medias; ande,, respectively, the continuity of

the normal flux density is implicitly enforced via (12).

Substituting (6) and (9) into (8), gives [Notice that for such points, the right side of (11) is
identical, except frone, /,.]

E. = . — Ezvorm + F norm- (10) 3) In (12), ¢ is used as the exact value of the dielectric

Finally, using (7), we get constant at the point where the calculation was made.
) It is the relationship between this value a#éd the

E.~F + <_ — 1) B vorm (11) averaged value that the FDTD program uses, which is

€1 an inherent part of the correction. However, the concept
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Fig. 4. Comparison of FDTD versus Bessel-function expansion at 300 MHz along the three principal, axes using the lossy dielectric sphere

described in Fig. 3.

The following list describes the implementation of the
correcting procedure step-by-step.

of an “exact” e must often be taken with a grain of
salt. It could simply be that the medium is known to
somewhat better precision than the resolution used in6)
the FDTD computation. For instance, it could be that
the medium is divided into small 1-mincubes, but
computational restrictions dictate that only big 1%m
cells can be used in the FDTD formulation. Therefore,
the £ values would be obtained by averaging small cells

the normal component§?,, norm (2, ¥, z) are obtained
using (13).

Now all necessary parameters are available, and for
each component, » = z, ¥y, z, the corrected values
E,(z,y, ) are calculated by (12), resulting in the
“exact” vectorE(z, y, z).

IV. EVALUATION

through out theH-loop-surfaces. Or, more specifically, . .
in hyperthermia cancer-therapy simulation, the courser19- 3 illustrates a test problem, which can be used to

FDTD parameters are derived from the finer pixel Valu&emonstrate the effectiveness of this method. By using layered
of computer tomography (CT) scans [13] spheres illuminated by plane wave at 300 MHz, a comparison

can be made between FDTD calculated values and those
calculated by Bessel-function expansions [14]. Thdield
vectors of the plane wave are polarized in thelirection,

I1l. PROCEDURE

and the wave is propagating igdirection. The sphere is
20 cm in diameter and consists mostly of a material with

1) The “exact” geometry(z, y, z) is defined. The posi- giglectric constant, = 30 and conductivity ofc = 0.3
tion and size of Yee cell;, j, k) and, therefore, the mho/m. This is chosen to be representative of biological
positions (z, j, k) of three E-field and threeH-field {issyes, which range somewhere between= 70, ¢ = 0.9
components are specified with respectto, v, z). For - mno/m for high-water-content tissues like muscle, ape 5,
each of the threet-field components, v = x, 5,2 5 = 0.05 mho/m for low-water-content tissues like bone or
averaged permittivity values, (¢, j, k) are calculated fat. Between 4- and 5-cm radii is a 1-cm-thick strip of fat- or
and stored (3). bone-like tissue at, = 5, ¢ = 0.05 mho/m. This is typical

2) The FDTD method is run, resulting in the calculationf a biological medium where a small strip of bone or fat
of ¥, (i, j, k) for each of the three directions » = causes a sharp discontinuity that is often difficult for an FDTD
z, y, z (2a). method to account for. Fig. 4 shows a comparison between the

3) A set of arbitrarily located pointse, , ), in which the analytic values with those from an FDTD calculation along the
“exact” solution should be calculated, is defined in thgrincipal axes using 1-cm cells. Thecomponent of thek-
mediume(z, y, z). field is compared here. At this point, it is important to discuss

4) The interpolated values &f,(x, v, z), and¥,(z, y, z) the chosen position of th&-field components in the FDTD

are calculated at these points using the interpolation lixtice with respect to the sphere’s geometry. The center of the
(Al). From theseF, (z, y, =) values are calculated viasphere [point (0, 0, 0)] matches the center of the Yee cell, i.e.,

(A3).

E-fields are offset one-half-cell length in their own direction

5) The interface unit normak(z, y, z) is calculated from with respect to the sphere’s center. Thus;loop-surfaces
(Ada) via (A4b) using the permittivity gradients. Finally,associated witlZ . -lattice points on the axis [e.g., points (O,
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Fig. 5. (a) Comparison of FDTD values in lattice points (“FDTD”), FDTD values linearly interpolated at 0.25-cm intervals without (“FROTD
and with (“FDTD.COR”) the corrector (12) versus theoretical values (“BESSEL") of theomponent of theE-field on the 48 axis, indicated as the
dashed line in Fig. 3. The zero abscissa value is atAhdattice point (0, 0,40.5). The “FDTDCOR"-solution “removes” the smoothing effect of
the “FDTD-INT"-interpolation and “recovers” the field discontinuities in the “fat” layer. (b) Comparison as in (a) foy tbemponent of theE-field.
Again, the “FDTD.COR"-solution matches the analytical solution best.

0, 4.5), (0, 0, 5.5), etc.] lie in a single medium, correspondirgther hand, for axes andy, there arel. -lattice points, which

to the homogeneous case= ¢ with zero correction in (12). are located in the vicinity of interfaces, where corresponding
[Indeed, the FDTD results on this axis are good (see Fig. 4Y-loop-surfaces are intersected by two media [e.g., points
the high E.-value in the “fat” layer is reproduced, which is(0, 4, 0.5) or (0, 5, 0.5), etc.]. However, as the interface
in accordance with the discussion in Section Il, concludingormal in these points is almost perpendiculas tae., almost
that no correction is necessary for homogeneous cells.] On thensloped,” noE_-“jumps” occur there, and the correction
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Fig. 6. Comparison of FDTD values linearly interpolated at 0.25-cm intervals without (“EDND) and with (“FDTD_COR”) the corrector (12) versus
theoretical values (“BESSEL") of the-component of theF-field on the “exact 4% axis,” indicated as the dotted line in Fig. 3. The zero abscissa value is
at the central sphere point (0, 0, 0). Also in this case, the “FBOM@R"-values reproduce field discontinuities correctly.

(12) is again zero. [Indeed, the FDTD results are also goadwrong field gradient around thg, value at—4.5 cm in the
for these axes (see Fig. 4), which is again in accordance wittt layer [see Fig. 5(b)].
the discussion in Section Il, concluding that no correction is The second set of values (“FDTOOR") is obtained us-
necessary for nonsloped interfaces.] As a conclusion for Fig.idg the corrector (12) in combination with the interpolation
the chosen FDTD lattice resolution of 1 cm, i.e., in the range e€heme (A3). Clearly, this is a superior calculation. The field
the fat layer, yields satisfactory results along the principal axeiscontinuities at the interfaces are correctly reproduced. The
However, problems come outside the symmetry axes where #eTD-inherent averaging at interfaces is “removed.” Even the
interfaces can be “sloped” with respect to the Cartesian-fissdmplicated behavior of thé,-component in the fat layer
components, i.e., where the FDTD results should be correctadound—4.5 cm [see Fig. 5(b)] is well approximated.
Fig. 5(a) and (b) refers to the position of the sloped™aXis,” The corrector (12) is improving the solution also on axes,
which is indicated in Fig. 3 as a dashed line. As this axis ighich do not meet any FDTD-lattice points (in Fig. 6, the
shifted 0.5 cm in the positive-direction—it meets exactly “exact 45 axis,” indicated in Fig. 3 as a dotted line, only
several lattice points fo&. and for £/, computation in the the E.-component is shown). Thus, only interpolated FDTD
sphere [values “FDTD” in Fig. 5(a) and (b)]. Thus, the effecteesults can be compared on this axis, and the effects of the poor
of a poor resolution of the FDTD solution can be directlyesolution of the FDTD solution are even more evident than in
studied along this axis. For example, the FDTD calculation &ig. 5(a). Without the corrector (12), even both peaksi-4t
E. [see Fig. 5(a)] around-4.5 cm (and analogously ab, cm are missed (curve "FDTINT"). In contrast, applying the
[see Fig. 5(b)] around-4.5 cm) did not have a lattice point incorrector (12), the field behavior at the interfaces is reproduced
the fat layer, and the sharp discontinuities were missed therecdtrectly (“FDTD.COR”).
did catch theF _-peak [see Fig. 5(a)] around 4.5 cm (and it cal- The correction procedure can be also applied to layers,
culated the correck,-value [see Fig. 5(b)] around4.5 cm) which are much thinner than the separation of the calculation
because it had a lattice point fé&. (and £,) in the fat layer. points in the FDTD lattice (see Fig. 7). In this figure, a
To illustrate the improvement of the resolution at this axisimilar problem as in Fig. 6 is investigated using a 0.25-cm
using the postprocessing routine, two other sets of valuied layer centered at the 5-cm radius. The FDTD program
derived from the FDTD program are plotted in Fig. 5(a) ang still using 1-cm cells. Once again, a simple interpolation
(b). The first are values of the-component [see Fig. 5(a)] (“FDTD_INT”) on the “exact 45 axis” could not “see” any
and of they-component [see Fig. 5(b)] of thé&-field at peaks in the fat layer (not shown). However, the “corrected”
0.25-cm intervals (“FDTDINT"), calculated via interpolation solution (“FDTD.COR”) recognizes the peaks, for both,and
(A3) without the corrector (12). This simple interpolation did;-components, even though it does not get the values exactly.
little to alleviate the missed’. ,,-peaks around-4.5 cm [see If we reduced the fat layer to 1/8 cm, we would risk missing
Fig. 5(a) and (b)], it performed an averaging at interfacébe peak if an interpolated value did not occur there. This
around theF . -peak at 4.5 cm [see Fig. 5(a)], and it calculateilustrates the rule of thumb: the interpolated values must have
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Fig. 7. Comparison of a 1-cinFDTD (“FDTD_COR”-curves) using the corrector (12) versus Bessel-function expansion at 300 MHz along the “exact
45° axis” using a lossy dielectric sphere with a 0.25-cm fat layer centered at the 5-cm radius for both compbnanis £,. In this small layer, the
peaks are reproduced, even though their magnitude is overestimated.

the same resolution as the medium. Of course, the resolutigp(z, v, z), are interpolated in the frequency domain for each
problems of the standard FDTD method can be alternativalyrectionr, v = z, ¥, z as

reduced applying a finer lattice (not shown). However, ap t(a: Y, 2)
from higher computation cost, there will always be critica e

lattice points lying in the vicinity of sloped interfaces where _ Z Z
errors may occur.

Z 77(357 Y, Z) 'fl/(a7 /37 ’7)

v=k, k+1 | B=7, j+1 \a=i, i+1
V. CONCLUSIONS (A-1)

We have presented a procedure which can substantiaNfiere f,(a, 3, v) representss, (a, 3, v) or ¥, (a, f, ),
increase the resolution of an FDTD-based simulation. THigspectively, which have been calculated by the FDTD method
is done by interpolating the FDTD calculated values of th@t eight vertices of the cubic FDTD lattice segmeyitz, v, z)
E-fields, and then enforcing the discontinuity of the normare the cubic shape functions [5] given by
component of the interpolated values across boundaries of thﬁx, v, 2)=(1—|a—z))-(1—|8—-y])-(1—|y—2|). (A-2)
media. Since this interpolation is only done after the FDTD )

) S . . The value of the averagel-field component, v = z, ¥,
simulation is complete, it adds almost nothing to the run. o . .
: . . . 2 in P(z, y, =), which is necessary for the correction (12), is
time. Comparisons with analytic results from Bessel-function

. ) . .calculated analogously to (2b)
expansions verify the accuracy of the results. This correction )
procedure might be of a particular importance for algorithms ~ £v(2; ¥, 2) = (Vo (@, ¥, 2))/(eu(@, y, 2) - A)  (A-3)
applied to hyperthermia planning systems. It has been showRere¥,, (z, ¥, 2) andé, (x, y, ) are interpolated as in (Al).

that results and their clinical interpretations critically depenthe interface unit normal vectax, which is used in (13), is

on the geometry of tissue interfaces [15]. calculated from
APPENDIX 0(x, y, 2) = (e, Ay, 72)
Point P(x, y, z) where the averaged (“flux-related”) FDTD = (T Ty, )/ [(, Ty, )| (A-40)

values are to be interpolated (see also Fig. 1) is situated insideere 7@, = 7@, (x, y, 2), v = x,y, z are components of
a cubic segment containing eight vertices of the FDTD lattidbe permittivity gradients, (x, y, z) is calculated from the
(o, B, Via=144+1,8=3 7+1, v =FkKk+1 [In interpolated (complex) permittivity values

general, for a single poinP(z, y, ;{), the combination of Tw(@, y, 2) =|Eulz + 6z, y, 2)| — |Eulz — b2, y, 2)]
vertex numbersd, 3, v) can be different for each of the - .

components of the electric field, » = z, v, z, which are u(@: 4, 2) =[ey(@, y + 8y, )] = |y (2, y = by, 2)|
offset one-half-cell length/2) with respect to each other.] — 7=(%; ¥, 2) =|e-(z, y, 2 + 62)| — |e=(z, ¥, z — 62))
The averaged permittivity¥, (z, v, z), and the electric flux (A-4b)
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where, for cubic elementéy = éy = 6z = Al/2. Notice that Dennis Sullivan (M'89-SM'95) received the Ph.D. degree from the Univer-

all interpolated values have an integral (averaged) sense &fof Utah, Salt Lake City, in 1987. , ,
From 1987 to 1992, he developed treatment planning for hyperthermia

quC”be not only the poi®(z, y, z), but also its surrounding .oncer therapy at Stanford University. He is currently Associate Professor
in the range oftAl/2. of electrical engineering at the University of Idaho, Idaho Falls, where his
research interests are nonlinear optical simulation and quantum solid-state
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