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Abstract—In recent years, the finite-difference time-domain
(FDTD) method has found numerous applications in the field
of computational electromagnetics. One of the strengths of the
method is the fact that no elaborate grid generation specifying
the content of the problem is necessary—the medium is specified
by assigning parameters to the regularly spaced cubes. However,
this can be a weakness, especially when the interfaces between
neighboring media are curved or “sloped” and do not exactly fit
the cubic lattice. Since theE- andH-fields are only calculated at
the regular intervals, sharp field discontinuities at the interfaces
are often missed. Furthermore, the averaging of the material
properties often leads to significant errors. In this paper, a
post-processing method is presented, which approximates the
correct field behavior at the interfaces by interpolating between
the FDTD calculated values, splitting them into the components
normal and tangential to the interfaces, and then enforcing the
interface conditions for each of these components separately.

Index Terms—Averaging of material properties, biological me-
dia, curved and “sloped” interfaces, FDTD method, flux-related
fields, interface conditions, layered spheres, linear interpolations,
Mie series solutions.

I. INTRODUCTION

ONE OF THE most widely used methods in compu-
tational electromagnetics is the finite-difference time-

domain (FDTD) method [1]–[4]. This method is a straightfor-
ward implementation of the time-domain Maxwell’s equations
into a finite-differencing scheme. The strength of the method is
its simplicity, lending it to easy implementation into a broad
range of applications.

An important characteristics of the FDTD method is the
fact that it does not require the generation of a complicated
grid to define the problem domain as is often used, for
instance, in the finite-element method [5] or the volume
surface integral-equation method [6], [7]. The FDTD prob-
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lem domain is usually made up of cubes, and the material
parameters are assigned to these cubes. This, of course, may
also be a weakness, limiting the accuracy to which any
surface can be defined according to the “stair casing” of
the FDTD formulation. Furthermore, the averaging of the
material properties at interfaces between neighboring media
often leads to significant errors. The reasons for these problems
are inherent to the FDTD method: firstly, the field components
are only calculated at uniform spatially shifted intervals, and
secondly, and more importantly, the FDTD method calculates

-field (and -field) componentsindirectly from electric (and
magnetic) fluxes, which cross perpendicular quadratic surfaces
constructed by the -lines (and -lines) associated with curl-
related line integrals over (and ) [8]. The relationship
between the field components and the flux values is not trivial
if the interfaces are curved or “sloped” and/or do not exactly
fit the cubic lattice. Problems of the discontinuity of fields
have to be taken into account—especially for such interfaces.

There have been hybrid FDTD formulations that used more
complex structures [8]–[12] than simple cubes. However,
deviations from the regular grid formulation always present
more complications and time spent in generating the problem
domain.

In this paper, we present a formulation for postprocessing
of the FDTD simulation that can significantly improve the
resolution of the FDTD at interfaces. This formulation uses
the fields calculated by a standard FDTD program, then
interpolates at points between the FDTD calculated values,
and then “corrects” the interpolated results in the frequency
domain based on the geometry of interfaces and parameters
of the surrounding medium. Since it is only done once, upon
completion of an FDTD simulation, it does not substantially
add to the simulation time. We present a formulation for
electrically inhomogeneous and magnetically homogeneous
media (“biological” media), although a similar formulation
can be derived for magnetically inhomogeneous media. An
explanation of the formulation will be presented, followed by
examples of FDTD calculations, which are verified by analytic
results based on Bessel-function expansions. It will also be
shown that this “corrector” can correct significant errors that
the FDTD had made at interfaces.

II. FORMULATION

We begin with a general overview of the idea. Fig. 1 shows
an interface dividing two regions, one consisting of a material
with a permittivity , the other with . is the exact -field
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Fig. 1. Fields within the contour of a “H-loop-surface”A in the Yee cell
in close proximity to an interface given by the permittivity values"1 and"2.
The relationship between the “exact” values [Ez(x; y; z), "(x; y; z), "z is
either "1 or "2], the averaged, “flux related,” FDTD values( ~Ez(x; y; z),
~"z(x; y; z)), and the flux	z(x; y; z) through surfaceA due to the
translation ofA (and the entire FDTD lattice) in they-direction in relation
to a fixed position of the interface between"1 and"2. The approximation of
this translation effect for averaged values (linear interpolation) is described in
the Appendix. The “recovery” scheme of the “exact” solution from averaged
values is given by (12).

in the medium at a location next to the interface (point
in Fig. 1), is an averaged value that has been obtained by
the standard FDTD method. (An analogous procedure can be
applied with a different value of to medium at the other
side of the interface, which, for simplicity, is not shown.) The
statement of the problem is: is what we have, but is what
we want. To put the problem in the perspective of the FDTD
formulation, Fig. 1 illustrates the calculation (Ampere’s law)
of the -component of the electric field via electric flux
through the surface bounded by a contour as follows:

(1a)

where the relationship between and the exact field distri-
bution on is given by

(1b)
where is the length of the cube’s edge. The
surface crosses an interface betweenand such that one
part of belongs to medium , and the other part to medium

, respectively. Thus, for this case, in (1b) is either
or . The standard FDTD methodology is to discretize (1a)

using the spatial differencing of the surrounding and
values in order to calculate the new value of flux through

at the time step at the point in the FDTD lattice specified

by , defined in the center of the “-loop-surface”
as follows:

(2a)

From this, an averaged, (“flux-related”) FDTD value of
the electric field at the time step is obtained via a simple
approximation of (1b) as follows:

A
(2b)

where the averaged dielectric constant throughout the-loop-
surface in (2b) is given by

A
(3)

In general, in (1b) can represent a real dielectric
constant and a conductivity. Thus, in the frequency domain,
it will be complex. Thus, for the disretization of (1b), an
additional averaging over conductivity values is necessary (not
shown here).

As a result of an FDTD run, we obtain (in the frequency
domain) a set of values in the lattice points, either
or . [Only one set must be stored, another one is
directly given via (2b), which is also valid in the frequency
domain for complex .] Theoretically, in order to
obtain or betweenthe lattice points, we could translate
the FDTD lattice with respect to a fixed geometry and run
the FDTD calculation again. Repeating this numerous times,
and defining for each FDTD run as the new
position of the “old” lattice point , we would obtain
a set of values , , and , as
indicated in Fig. 1. [In the practical implementation, the effect
of this translation will be approximated by an interpolation (see
Appendix).] In general, due to the averaging of (2a) and (3),
the averaged distribution would becontinuouswith respect
to the translation in the- and -directions, i.e., continuous on
the “old” -loop-surface , independent of the geometry of
the interface. In contrast, the “exact” distribution is usually
discontinuouson , it “jumps” during transitions between the
media and . Thus, in order to take this discontinuity into
account, the averaged distribution must, in most cases, be
corrected, with the exception of two special cases: the trivial
case of a homogeneous cell and the case of
the interface normal being perpendicular to the-direction.
In the latter case, is also continuous on and,
therefore, can be represented by . Notice that for
the limit case of a constant value of on , the remaining
integration in (1b) becomes identical with the integration in
(3). Thus, (2b) implicitly yields the exact value .

Referring again to Figs. 1 and 2, both the “exact” and the
averaged -field vectors can be described by the sum of the
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Fig. 2. Splitting of the “exact” (E) and averaged (~E) FDTD fields into the
tangential (above) and normal (below) directions with respect to the interface
between"1 and"2, and subsequent projection into thez-direction.

components tangential and normal to the nearby interface [the
coordinate index , , is left out for simplicity for all
expressions in (4)–(11)]

(4)

(5)

At this point, according to the above discussion of the
standard FDTD discretization, we make two key assumptions:
1) The tangential component of the averaged FDTD value is
equal to the tangential component of the “exact” value of
( , shown in Fig. 2). Consequently, also for their
-components,

(6)

2) The normal component of the flux density is a constant
throughout the interface between and for “exact” and
averaged distributions (see Fig. 2). Therefore, in medium
for the -components

(7)

The relationships in (4) and (5) can be interpreted as the
three separate equations corresponding to the three directions,
one set of which is

(8)

(9)

Substituting (6) and (9) into (8), gives

(10)

Finally, using (7), we get

(11)

Fig. 3. Test configuration used to evaluate the FDTD results via
Bessel-function expansion. The “45� axes” in theY Z-plane. Notice that due
to the specification of the Yee cells (1-cm size) with respect to the geometry
of the sphere, the lattice points forEz- and for Ey-FDTD computation
are located on the 45� axis, indicated as a dashed line, which is shifted
a half-cell length (0.5 cm) in thez-direction with respect to the “exact
45� axis” (dotted line).

or, more generally, for all points in the FDTD domain,

(12)

Equation (12) is the heart of the method. The second term
on the right is the “correction,” i.e., the difference between the
averaged FDTD value and the “exact” value. in (12)
is calculated from the scalar product of the averaged FDTD
vector and the unit normal vector at the interface

(13)
is the -component of . is derived from the gradient of

(see Appendix), i.e., [and, consequently, also in
(13)] are nonzero, not only directly at the interface, but also
for other points on the -loop-surface , where the correction
(12) is necessary. Analogous expressions to (12) and (13) can
be derived for - and -directions using , , ,
and , respectively.

A. Remarks

1) If the cell is homogeneous (the case on ),
the second term in (12) goes to zero. Similarly, if the
interface normal is perpendicular to the-direction,
then and, again, the second term in (12)
goes to zero. Either of these two situations result in
the uncorrected FDTD value being equal to the “exact”
value.

2) It can be shown that applying (12) to a pair of points
which are situated on different sides of the interface
in the media and , respectively, the continuity of
the normal flux density is implicitly enforced via (12).
[Notice that for such points, the right side of (11) is
identical, except from .]

3) In (12), is used as the exact value of the dielectric
constant at the point where the calculation was made.
It is the relationship between this value and, the
averaged value that the FDTD program uses, which is
an inherent part of the correction. However, the concept
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Fig. 4. Comparison of FDTD versus Bessel-function expansion at 300 MHz along the three principal axesx, y, z using the lossy dielectric sphere
described in Fig. 3.

of an “exact” must often be taken with a grain of
salt. It could simply be that the medium is known to
somewhat better precision than the resolution used in
the FDTD computation. For instance, it could be that
the medium is divided into small 1-mmcubes, but
computational restrictions dictate that only big 1-cm
cells can be used in the FDTD formulation. Therefore,
the values would be obtained by averaging small cells
through out the -loop-surfaces. Or, more specifically,
in hyperthermia cancer-therapy simulation, the courser
FDTD parameters are derived from the finer pixel values
of computer tomography (CT) scans [13].

III. PROCEDURE

The following list describes the implementation of the
correcting procedure step-by-step.

1) The “exact” geometry is defined. The posi-
tion and size of Yee cells and, therefore, the
positions of three -field and three -field
components are specified with respect to . For
each of the three -field components
averaged permittivity values are calculated
and stored (3).

2) The FDTD method is run, resulting in the calculation
of for each of the three directions

(2a).
3) A set of arbitrarily located points , in which the

“exact” solution should be calculated, is defined in the
medium .

4) The interpolated values of , and
are calculated at these points using the interpolation in
(A1). From these, values are calculated via
(A3).

5) The interface unit normal is calculated from
(A4a) via (A4b) using the permittivity gradients. Finally,

the normal components are obtained
using (13).

6) Now all necessary parameters are available, and for
each component , the corrected values

are calculated by (12), resulting in the
“exact” vector .

IV. EVALUATION

Fig. 3 illustrates a test problem, which can be used to
demonstrate the effectiveness of this method. By using layered
spheres illuminated by plane wave at 300 MHz, a comparison
can be made between FDTD calculated values and those
calculated by Bessel-function expansions [14]. The-field
vectors of the plane wave are polarized in the-direction,
and the wave is propagating in-direction. The sphere is
20 cm in diameter and consists mostly of a material with
dielectric constant and conductivity of
mho/m. This is chosen to be representative of biological
tissues, which range somewhere between ,
mho/m for high-water-content tissues like muscle, and ,

mho/m for low-water-content tissues like bone or
fat. Between 4- and 5-cm radii is a 1-cm-thick strip of fat- or
bone-like tissue at , mho/m. This is typical
of a biological medium where a small strip of bone or fat
causes a sharp discontinuity that is often difficult for an FDTD
method to account for. Fig. 4 shows a comparison between the
analytic values with those from an FDTD calculation along the
principal axes using 1-cm cells. The-component of the -
field is compared here. At this point, it is important to discuss
the chosen position of the -field components in the FDTD
lattice with respect to the sphere’s geometry. The center of the
sphere [point (0, 0, 0)] matches the center of the Yee cell, i.e.,

-fields are offset one-half-cell length in their own direction
with respect to the sphere’s center. Thus,-loop-surfaces
associated with -lattice points on the axis [e.g., points (0,
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(a)

(b)

Fig. 5. (a) Comparison of FDTD values in lattice points (“FDTD”), FDTD values linearly interpolated at 0.25-cm intervals without (“FDTDINT”)
and with (“FDTD COR”) the corrector (12) versus theoretical values (“BESSEL”) of thez-component of theE-field on the 45� axis, indicated as the
dashed line in Fig. 3. The zero abscissa value is at theEz -lattice point (0, 0,+0.5). The “FDTDCOR”-solution “removes” the smoothing effect of
the “FDTD-INT”-interpolation and “recovers” the field discontinuities in the “fat” layer. (b) Comparison as in (a) for they component of theE-field.
Again, the “FDTDCOR”-solution matches the analytical solution best.

0, 4.5), (0, 0, 5.5), etc.] lie in a single medium, corresponding
to the homogeneous case with zero correction in (12).

[Indeed, the FDTD results on this axis are good (see Fig. 4);
the high -value in the “fat” layer is reproduced, which is
in accordance with the discussion in Section II, concluding
that no correction is necessary for homogeneous cells.] On the

other hand, for axes and , there are -lattice points, which
are located in the vicinity of interfaces, where corresponding

-loop-surfaces are intersected by two media [e.g., points
(0, 4, 0.5) or (0, 5, 0.5), etc.]. However, as the interface
normal in these points is almost perpendicular to, i.e., almost
“nonsloped,” no -“jumps” occur there, and the correction
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Fig. 6. Comparison of FDTD values linearly interpolated at 0.25-cm intervals without (“FDTDINT”) and with (“FDTD COR”) the corrector (12) versus
theoretical values (“BESSEL”) of thez-component of theE-field on the “exact 45� axis,” indicated as the dotted line in Fig. 3. The zero abscissa value is
at the central sphere point (0, 0, 0). Also in this case, the “FDTDCOR”-values reproduce field discontinuities correctly.

(12) is again zero. [Indeed, the FDTD results are also good
for these axes (see Fig. 4), which is again in accordance with
the discussion in Section II, concluding that no correction is
necessary for nonsloped interfaces.] As a conclusion for Fig. 4,
the chosen FDTD lattice resolution of 1 cm, i.e., in the range of
the fat layer, yields satisfactory results along the principal axes.
However, problems come outside the symmetry axes where the
interfaces can be “sloped” with respect to the Cartesian-field
components, i.e., where the FDTD results should be corrected.
Fig. 5(a) and (b) refers to the position of the sloped “45axis,”
which is indicated in Fig. 3 as a dashed line. As this axis is
shifted 0.5 cm in the positive-direction—it meets exactly
several lattice points for and for computation in the
sphere [values “FDTD” in Fig. 5(a) and (b)]. Thus, the effects
of a poor resolution of the FDTD solution can be directly
studied along this axis. For example, the FDTD calculation of

[see Fig. 5(a)] around 4.5 cm (and analogously of
[see Fig. 5(b)] around 4.5 cm) did not have a lattice point in
the fat layer, and the sharp discontinuities were missed there. It
did catch the -peak [see Fig. 5(a)] around 4.5 cm (and it cal-
culated the correct -value [see Fig. 5(b)] around4.5 cm)
because it had a lattice point for (and ) in the fat layer.

To illustrate the improvement of the resolution at this axis
using the postprocessing routine, two other sets of values
derived from the FDTD program are plotted in Fig. 5(a) and
(b). The first are values of the-component [see Fig. 5(a)]
and of the -component [see Fig. 5(b)] of the -field at
0.25-cm intervals (“FDTDINT”), calculated via interpolation
(A3) without the corrector (12). This simple interpolation did
little to alleviate the missed -peaks around 4.5 cm [see
Fig. 5(a) and (b)], it performed an averaging at interfaces
around the -peak at 4.5 cm [see Fig. 5(a)], and it calculated

a wrong field gradient around the value at 4.5 cm in the
fat layer [see Fig. 5(b)].

The second set of values (“FDTDCOR”) is obtained us-
ing the corrector (12) in combination with the interpolation
scheme (A3). Clearly, this is a superior calculation. The field
discontinuities at the interfaces are correctly reproduced. The
FDTD-inherent averaging at interfaces is “removed.” Even the
complicated behavior of the -component in the fat layer
around 4.5 cm [see Fig. 5(b)] is well approximated.

The corrector (12) is improving the solution also on axes,
which do not meet any FDTD-lattice points (in Fig. 6, the
“exact 45 axis,” indicated in Fig. 3 as a dotted line, only
the -component is shown). Thus, only interpolated FDTD
results can be compared on this axis, and the effects of the poor
resolution of the FDTD solution are even more evident than in
Fig. 5(a). Without the corrector (12), even both peaks, at4.5
cm are missed (curve “FDTDINT”). In contrast, applying the
corrector (12), the field behavior at the interfaces is reproduced
correctly (“FDTD COR”).

The correction procedure can be also applied to layers,
which are much thinner than the separation of the calculation
points in the FDTD lattice (see Fig. 7). In this figure, a
similar problem as in Fig. 6 is investigated using a 0.25-cm
fat layer centered at the 5-cm radius. The FDTD program
is still using 1-cm cells. Once again, a simple interpolation
(“FDTD INT”) on the “exact 45 axis” could not “see” any
peaks in the fat layer (not shown). However, the “corrected”
solution (“FDTD COR”) recognizes the peaks, for both,- and
-components, even though it does not get the values exactly.

If we reduced the fat layer to 1/8 cm, we would risk missing
the peak if an interpolated value did not occur there. This
illustrates the rule of thumb: the interpolated values must have
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Fig. 7. Comparison of a 1-cm3 FDTD (“FDTD COR”-curves) using the corrector (12) versus Bessel-function expansion at 300 MHz along the “exact
45� axis” using a lossy dielectric sphere with a 0.25-cm fat layer centered at the 5-cm radius for both componentsEz andEy . In this small layer, the
peaks are reproduced, even though their magnitude is overestimated.

the same resolution as the medium. Of course, the resolution
problems of the standard FDTD method can be alternatively
reduced applying a finer lattice (not shown). However, apart
from higher computation cost, there will always be critical
lattice points lying in the vicinity of sloped interfaces where
errors may occur.

V. CONCLUSIONS

We have presented a procedure which can substantially
increase the resolution of an FDTD-based simulation. This
is done by interpolating the FDTD calculated values of the

-fields, and then enforcing the discontinuity of the normal
component of the interpolated values across boundaries of the
media. Since this interpolation is only done after the FDTD
simulation is complete, it adds almost nothing to the run
time. Comparisons with analytic results from Bessel-function
expansions verify the accuracy of the results. This correction
procedure might be of a particular importance for algorithms
applied to hyperthermia planning systems. It has been shown
that results and their clinical interpretations critically depend
on the geometry of tissue interfaces [15].

APPENDIX

Point where the averaged (“flux-related”) FDTD
values are to be interpolated (see also Fig. 1) is situated inside
a cubic segment containing eight vertices of the FDTD lattice
( ); , , , , . [In
general, for a single point , the combination of
vertex numbers ( ) can be different for each of the
components of the electric field, , , , which are
offset one-half-cell length ( ) with respect to each other.]
The averaged permittivity , and the electric flux

, are interpolated in the frequency domain for each
direction , , , as

(A-1)

where represents or ,
respectively, which have been calculated by the FDTD method
at eight vertices of the cubic FDTD lattice segment.
are the cubic shape functions [5] given by

(A-2)

The value of the averaged-field component , , ,
in , which is necessary for the correction (12), is

calculated analogously to (2b)

A (A-3)

where and are interpolated as in (A1).
The interface unit normal vector, which is used in (13), is
calculated from

(A-4a)

where are components of
the permittivity gradient. is calculated from the
interpolated (complex) permittivity values

(A-4b)
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where, for cubic elements, . Notice that
all interpolated values have an integral (averaged) sense and
describe not only the point , but also its surrounding
in the range of .
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Klinikum, Medical School of Humboldt University
at Berlin, Berlin, Germany, and also at the Kon-
rad–Zuse–Zentrum Berlin (ZIB), Berlin, Germany,
where he is engaged in the development of computer

simulation for hyperthermia cancer therapy and applicator design.

Dennis Sullivan (M’89–SM’95) received the Ph.D. degree from the Univer-
sity of Utah, Salt Lake City, in 1987.

From 1987 to 1992, he developed treatment planning for hyperthermia
cancer therapy at Stanford University. He is currently Associate Professor
of electrical engineering at the University of Idaho, Idaho Falls, where his
research interests are nonlinear optical simulation and quantum solid-state
simulation.

Peter Wust was born in Berlin, Germany, in 1953.
He received the M.S. degree (Dipl.-Phys.) in physics
and the M.D. (Dr.-Med.) degree from the Free
University of Berlin, Berlin, Germany, in 1978 and
1983, respectively.

Since 1984, he has been with the Department
of Radiation Oncology, Charit´e–Campus Virchow-
Klinikum, Medical School of Humboldt University
at Berlin, Berlin, Germany. He received the board
certification of radiation oncology in 1990, and,
since 1993, has been working as an Assistant Pro-

fessor and Consultant for radiation oncology. He has performed research in
nuclear physics and radiation oncology. Since 1988, he has been particularly
interested in the methodical and clinical aspects of hyperthermia in cancer
therapy and, since 1994, he has been Coordinator of a collaborative research
project on hyperthermia (Sonderforschungsbereich 273).

Martin Seebasswas born in Bad Neuenahr, Germany, in 1960. He received
the diploma and Ph.D. degrees in physics from the University of Heidelberg,
Heidelberg, Germany, in 1983 and 1990, respectively.

From 1985 to 1991, he was with the German Cancer Research Cen-
ter, Heidelberg, Germany. Since May 1991, he has been with the Kon-
rad–Zuse–Zentrum fuer Informationstechnik Berlin (ZIB), Berlin, Germany,
where he is involved with the development of computer simulation for
hyperthermia cancer therapy.

Peter Deuflhard was born near Munich, Germany,
in 1944. He received the physics degree from the
Munich Institute of Technology, Munich, Germany,
in 1968, and the Ph.D. degree in mathematics from
the University of Cologne, Cologne, Germany, in
1972.

From 1978 to 1986, he was Full Professor of
mathematics (with a specialty in numerical anal-
ysis) at the University of Heidelberg, Heidelberg,
Germany. He then moved to Berlin, Germany, to
build up the Konrad–Zuse–Zentrum fuer Informa-

tionstechnik Berlin (ZIB), Berlin, Germany, as a center of high-performance
scientific computing. He is currently the Director of ZIB, and also Full
Professor of scientific computing at the Free University of Berlin, Munich,
Germany. His special fields of interest are differential equation modeling,
efficient simulation, and optimization. He has worked in many different
application areas, including space technology, chemical engineering, medicine,
and electronics. His main research contributions are algorithms for the fast and
reliable solution of ordinary and partial differential equation systems, which
are typically large scale and originating from engineering or medicine.

Roland Felix was born in Berlin, Germany, on
May 15, 1938. He received the M.D. degree form
the University of Munich, Munich, Germany, in
1962.

In 1964, he began his scientific work at Bonn
University, Bonn, Germany, where his main inter-
est was heart and pulmonary diseases, as well as
cerebral microcirculation. Since 1978, he has been
Full Professor of Radiology at Charité–Campus
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